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1.Introduction

1.1 Research background

• Green house gases emission causing severe pollution

problem -> sustainable development

• Urban transportation sector: electric vehicle (EV)

replacing internal combustion vehicle

Reference: https://m.gettyimagesbank.com/view/eco-friendly-electric-cars-and-gasoline-car-
comparison-electric-auto-environment-protection-advantage-vector-illustration-set-gasoline-electro-
car-comparison-infographic/1343361954
https://www.cittimagazine.co.uk/news/electric-vehicles-charging/te-busts-ev-co2-myth.html

<Fig. 1 Emission comparison of EV, gasoline car and diesel car>

 Impact of urban transportation sector on EVs is in

need of study and research
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This research studies

• Impact of urban traffic condition on EV charging

power demand

• EV charging schedule at charging stations operate by a

car sharing system

1.Introduction

1.2 Research objective

Reference: https://www.youtube.com/watch?v=BL99dIYDq6Y
https://www.autoevolution.com/news/wattmobile-new-ev-car-sharing-program-starting-in-france-
81997.html

<Fig. 2 Car sharing system charging station>

<Fig. 3 Car sharing system charging station>

 Research objective

1) Charging power demand estimation

2) EV charging schedule formulation
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2. Literature review
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Contribution

 Connection of individual EV charging schedule with traffic network

 Impact of urban traffic condition on EV sharing system operation

 Implementation of charging power demand estimation in charging station operation

2. Literature review
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𝑁𝑒 𝑥, 𝑡 : Number of discharged EVs entering area Ω during

time t

𝑁𝑙 𝑥, 𝑡 : Number of discharged EVs leaving area Ω during time

t

<Fig. 4 Traffic fluid model schematic diagram>

3. Charging power demand estimation model

3.1 Traffic fluid model

𝑁𝑜 𝑥, 𝑡 : Number of discharged EVs from spatial origin to

charging station at time t

𝑁𝑝 𝑥, 𝑡 : Number of discharged EVs that have already passed

through charging station before time t

Ω
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𝑛𝑒 𝑥, 𝑡 =
𝜕2𝑁𝑒(𝑥,𝑡)

𝜕𝑥𝜕𝑡
: density of discharged EVs entering area Ω at time t

𝑛𝑙 𝑥, 𝑡 =
𝜕2𝑁𝑙(𝑥,𝑡)

𝜕𝑥𝜕𝑡
: density of discharged EVs leaving area Ω at time t

<Fig. 5 Traffic density and flow diagram>

3. Charging power demand estimation model

3.1 Traffic fluid model

𝑛𝑜 𝑥, 𝑡 =
𝜕𝑁𝑜(𝑥,𝑡)

𝜕𝑥
: density of discharged EVs at charging station at t

𝑛𝑝 𝑥, 𝑡 =
𝜕𝑁𝑝(𝑥,𝑡)

𝜕𝑡
: traffic flow of discharged EVs at charging station at t

Ω
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𝑵𝒆 𝒙, 𝒕 − 𝑵𝒍 𝒙, 𝒕 = 𝑵𝒐 𝒙, 𝒕 + 𝑵𝒑 𝒙, 𝒕

3. Charging power demand estimation model

3.2 Fluid conservation equation

𝒏𝒆 𝒙, 𝒕 − 𝒏𝒍 𝒙, 𝒕 = 𝒏𝒐 𝒙, 𝒕 + 𝒏𝒑 𝒙, 𝒕

<Fig. 6 Representation of fluid conservation equation>

Fluid conservation equation: 

𝑛𝑒 𝑥, 𝑡 − 𝑛𝑙(𝑥, 𝑡) =
𝑑𝑛𝑜(𝑥,𝑡)

𝑑𝑡
+

𝜕𝑣 𝑥,𝑡

𝜕𝑥
𝑛𝑜 𝑥, 𝑡

𝑛𝑝 𝑥, 𝑡 = 𝑛𝑜(𝑥, 𝑡) × 𝑣(𝑥, 𝑡)


𝑑𝑛𝑜(𝑥,𝑡)

𝑑𝑡
= 𝑛𝑒 𝑥, 𝑡 − 𝑛𝑙 𝑥, 𝑡 −

𝜕𝑣 𝑥,𝑡

𝜕𝑥
𝑛𝑜(𝑥, 𝑡)

flow = density * velocity:
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3. Charging power demand estimation model

<Fig. 7 Arrival rate diagrammatic drawing>

 Arrival rate:

𝒂 𝒙, 𝒕 = 𝒏𝒐 𝒙, 𝒕 × 𝒗 𝒙, 𝒕 − 𝜷(𝒕) --> 𝛽(𝑡): arrival rate of discharged EVs will be charged at other charging station

10Reference: https://www.lboro.ac.uk/media-centre/press-releases/2019/november/loughborough-
joins-vpach-team/
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3. Charging power demand estimation model

<Fig. 8 Service completion rate>

Minimum number of charging piles:

𝒔𝒎𝒊𝒏 =
𝒂(𝒙,𝒕)

𝝁(𝒕)
--> 𝜇(𝑡): service completion rate
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3. Charging power demand estimation model

<Fig. 9 Charging power demand diagram>

 Charging power demand:

𝑷𝒅 𝒙, 𝒕 = 𝑷𝒂𝒗 𝒔 × 𝒔𝒎𝒊𝒏 --> 𝑃𝑎𝑣 𝑠 : average charging power per charging pile
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4. EV charging schedule model

4.1 Notations

Indices

t time index, t ∈ 𝑇

i EV index, i ∈ I

s charging pile index, s ∈ S

Parameters

𝑁𝑒(𝑥, 𝑡) number of discharged EVs entering area Ω at t

𝑁𝑙(𝑥, 𝑡) number of discharged EVs leaving area Ω at t

𝑁𝑜(𝑥, 𝑡) number of discharged EVs from spatial origin to charging station at t

𝑁𝑝(𝑥, 𝑡) number of discharged EVs that have already passed through

charging station before t

𝑛𝑜(𝑥, 𝑡) traffic density at charging station at t

𝑛𝑝(𝑥, 𝑡) traffic flow at charging station at t

𝑣 𝑥, 𝑡 velocity of EV at charging station at t [km/h]

𝛽(𝑡) rate of discharged EVs charging at other charging station at t

𝑎(𝑥, 𝑡) arrival rate of EVs at charging station at t

𝜇(𝑡) service completion rate at charging station at t

e unit electricity price [$/kWh]

𝑆𝑂𝐶𝑎𝑟𝑟(𝑖) arrival battery state-of-charge of ith EV [%]

𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) required battery state-of-charge of ith EV [%]

𝑡𝑎𝑟𝑟(𝑖) arrival time of ith EV

𝑡𝑑𝑒𝑝(𝑖) departure time of ith EV

𝑃𝑚𝑎𝑥(𝑖) max charging power of ith EV [kW]

𝑃𝑚𝑎𝑥(𝑠) max charging power of sth charging pile [kW]

𝑃𝑚𝑎𝑥(𝑠𝑦𝑠) system capacity [kW]

𝑃𝑎𝑣(𝑠) average charging power of sth charging pile [kW]

𝑃𝑑(𝑥, 𝑡) estimated charging power demand for charging station at time t

𝑝(𝑠, 𝑡) power provided by sth charging pile at t

𝑐𝑝1 penalty cost occurs when 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) ≤ 𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) [$/kWh]

𝑐𝑝2 penalty cost occurs when charging power exceeds 𝑃𝑑(𝑥, 𝑡) [$/kWh]

Decision variables

𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) departure battery state-of-charge of ith EV [%]

z(x, t) = 1, sth charging pile is occupied at t

= 0, sth charging pile is unoccupied at t

y(i, s, t) =1, ith EV is charging at sth charging pile at t

=0, ith EV is not charging at sth charging pile at t

13Intelligent Manufacturing Systems Lab.
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Assumptions:

4. EV charging schedule model

4.2 EV charging scheduling problem description

<Fig. 10 Charging station operation>

14

(1) EVs arrive following arrival rate 𝑎(𝑥, 𝑡)

(2) First-come-first-serve

(3) Earliest idle charging pile selection

(4) Charging EVs stop charging when:

-->Battery state-of-charge requirements are

satisfied

-->Departure time is reached

Intelligent Manufacturing Systems Lab.
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Two-stage mechanism proposed to solve the problem

formulated:

4. EV charging schedule model

4.2 Solution approach

<Fig. 10 Solution approach>
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1) First stage: charging power demand estimation

Arrival rate, charging power demand computation

2) Second stage: EV charging schedule

Mixed-integer linear programming
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Objective: total cost minimization = (electricity consumption cost + penalty cost 1 + penalty cost 2)

4. EV charging schedule model

16

𝑇𝐶 = σ𝑡
𝑇 𝑒(𝑡) × σ𝑠

𝑆 𝑝(𝑠, 𝑡) × 𝑧(𝑠, 𝑡) + σ𝑖
𝐼 𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) − 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) × 𝑐𝑝1 + σ𝑠

𝑆 𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 − 𝑃𝑑(𝑥, 𝑡) × 𝑐𝑝2

𝑚𝑖𝑛

Electricity consumption cost

Penalty cost1: 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) ≤ 𝑆𝑂𝐶𝑟𝑒𝑞(𝑖)

Penalty cost2: charging power ≥ estimated 

charging power demand

Intelligent Manufacturing Systems Lab.
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Constraint 1: individual capacity

4. EV charging schedule model

17

For charging pile:

For EV:𝑝 𝑠, 𝑡 × 𝑦 𝑖, 𝑠, 𝑡 ≤ 𝑃𝑚𝑎𝑥 𝑖 ∀𝑖, t (2)

𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 ≤ 𝑃𝑚𝑎𝑥 𝑠 ∀𝑠, 𝑡 (1)

σ𝑡
𝑇σ𝑖

𝐼 𝑦 𝑖, 𝑠, 𝑡 = σ𝑡
𝑇 𝑧 𝑠, 𝑡 ∀𝑠 (3)

Constraint 2: charging pile and EV consistency

𝑆𝑂𝐶𝑑𝑒𝑝 𝑖 = ൗσ
𝑡𝑎𝑟𝑟 𝑖

𝑡𝑑𝑒𝑝 𝑖
𝑝 𝑠, 𝑡 × 𝑧(𝑠, 𝑡)) × 𝑦(𝑖, 𝑠, 𝑡) 𝑃𝑚𝑎𝑥 𝑖 + 𝑆𝑂𝐶𝑎𝑟𝑟 ∀𝑖, 𝑡 (4)

Constraint 3: EV departure battery state-of-charge

Intelligent Manufacturing Systems Lab.
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Constraint 4: penalty cost non-negative

4. EV charging schedule model

18

Constraint 5: system capacity

Constraint 6: binary variable

σ𝑠
𝑆 𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 − 𝑃𝑑 𝑥, 𝑡 = 𝑚𝑎𝑥 0, σ𝑠

𝑆 𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 − 𝑃𝑑 𝑥, 𝑡 ∀𝑡 (5)

𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) − 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) = 𝑚𝑎𝑥 0, 𝑆𝑂𝐶𝑟𝑒𝑞 (𝑖) − 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) ∀𝑖 (6)

σ𝑠
𝑆σ𝑡

𝑇 )𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 ≤ 𝑃𝑚𝑎𝑥(𝑠𝑦𝑠 ∀𝑡 (7)

𝑦 𝑖, 𝑠, 𝑡 ቊ
= 1 𝑖𝑡ℎ 𝐸𝑉 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑖𝑙𝑒 𝑠 𝑎𝑡 𝑡
= 0 𝑖𝑡ℎ 𝐸𝑉 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑖𝑙𝑒 𝑠 𝑎𝑡 𝑡

𝑧(𝑠, 𝑡) ቊ
= 1 𝑠𝑡ℎ 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑖𝑙𝑒 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑎𝑡 𝑡
= 0 𝑠𝑡ℎ 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑖𝑙𝑒 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑎𝑡 𝑡

Intelligent Manufacturing Systems Lab.
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Numerical example to illustrate proposed problem

<Fig. 11 Representation of traffic fluid model>

<Fig. 12 Implementation in real map>

5. Experimental analysis and result

5.1 Case study
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 Real geographical information in Seoul, South

Korea is applied

• Operation objective --> area Ω

• Road segments --> black arrows

• Charging station location --> red node
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5. Experimental analysis and result

5.1 Case study

Reference: https://topis.seoul.go.kr/?tr_code=rsite

Time-interval Number of vehicles Number of discharged EVs Traffic density Velocity

00:00am -
01:00am

1 14 0.3 0.1 50.0
2 12 0.2 0.0 50.0
3 22 0.4 0.1 50.0
4 21 0.4 0.1 50.0
5 26 0.5 0.1 50.0
6 41 0.8 0.2 50.0

01:00am-
02:00am

7 36 0.7 0.1 50.0
8 29 0.6 0.1 50.0
9 14 0.3 0.1 50.0

10 14 0.3 0.1 50.0
11 23 0.5 0.1 50.0
12 25 0.5 0.1 50.0

02:00am-
03:00am

13 22 0.4 0.1 50.0
14 31 0.6 0.1 50.0
15 47 0.9 0.2 50.0
16 35 0.7 0.1 50.0
17 21 0.4 0.1 50.0
18 11 0.2 0.0 50.0

03:00am-
04:00am

19 17 0.3 0.1 47.0
20 13 0.3 0.1 47.0
21 12 0.2 0.0 47.0
22 16 0.3 0.1 47.0
23 18 0.4 0.1 47.0
24 23 0.5 0.1 47.0

<Table. 1. Data collection (partial)>
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Arrival rate and charging power demand are shown:

• Maximum arrival rate of EVs is 14.5 and minimum is

0.2

• Maximum charging power demand is 144.6kW and

minimum is 2.0kW

• Five charging piles are needed
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5. Experimental analysis and result

5.1 Case study

<Fig. 13 Arrival rate of EVs>

<Fig. 14 Charging power demand for charging station>
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Parameter setting is illustrated according to previous research (Yang et al., 2019) :

5. Experimental analysis and result

5.1 Case study

<Table. 2 Parameter setting>

Parameter Value

𝑃𝑚𝑎𝑥(𝑠𝑦𝑠) System capacity 500 [kW]

𝑃𝑚𝑎𝑥(𝑠) Max charging power of sth charging pile 20 [kW]

𝑃𝑚𝑎𝑥(𝑖) Max charging power of ith EV 100 [kW]

𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) Required battery state-of-charge of ith EV 80 [%]

𝑆𝑂𝐶𝑎𝑟𝑟(𝑖) Arrival battery state-of-charge of ith EV N(0, 50) [%]

𝑝(𝑠, 𝑡) Power provided by sth charging pile at t 20 [kWh]

𝑐𝑝1 Penalty cost occurs when 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) ≤ 𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) 0.5 [$/kWh]

𝑐𝑝2
Penalty cost occurs when charging power exceeds 

𝑃𝑑(𝑥, 𝑡)
0.5 [$/kWh]

e unit electricity price N(2, 10) [$/kWh]

T time index 144

S charging pile index 5

22Intelligent Manufacturing Systems Lab.
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 Result of case study is achieved by gurobi in python

<Fig. 15 Charging schedule>

<Fig. 16 Departure battery state-of-charge (partial)>

5. Experimental analysis and result

5.1 Case study

23

Charging pile 1

Charging pile 2

Charging pile 3

Charging pile 4

Charging pile 5

18:00pm -- 19:00pm 19:00pm -- 20:00pm 20:00pm -- 21:00pm 21:00pm -- 22:00pm 22:00pm -- 23:00pm 23:00pm -- 24:00am12:00pm -- 13:00pm 13:00pm -- 14:00pm 14:00pm -- 15:00pm 15:00pm -- 16:00pm 16:00pm -- 17:00pm 17:00pm -- 18:00pm06:00am -- 07:00am 07:00am -- 08:00am 08:00am -- 09:00am 09:00am -- 10:00am 10:00am -- 11:00am 11:00am -- 12:00pm00：00am -- 01:00am 01:00am -- 02:00am 02:00am -- 03:00am 03:00am -- 04:00am 04:00am -- 05:00am 05:00am -- 06:00am
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5.2.1 Sensitivity analysis

1. Number of charging piles (Fig. 17)

2. Estimated charging power demand (Fig. 18)

3. Departure battery state-of-charge (Fig. 19)
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<Fig. 17 Number of charging piles>

<Fig. 18 Estimated charging power demand>

0%

20%

40%

60%

80%

100%

0
500

1000
1500
2000
2500
3000
3500

TC Psum Service performance

<Fig. 19 Departure battery state-of-charge>
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5. Experimental analysis and result

5.2 Experimental analysis 

 Number of charging piles increase --> total cost decrease &

total energy consumption increase (system idleness)

 Estimated charging power demand 𝑃𝑑 ≥ 49.33 (= system is

acceptable)

 Required battery state-of-charge 𝑆𝑂𝐶𝑟𝑒𝑞 ≥ 85% (= system

breakdown)

24Intelligent Manufacturing Systems Lab.
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5. Experimental analysis and result

5.2 Experimental analysis 

5.2.2 Interaction between penalty costs

• 𝑐𝑝1 penalty cost occurs when 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖) ≤ 𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) [$/kWh]

• 𝑐𝑝2 penalty cost occurs when charging power exceeds 𝑃𝑑(𝑥, 𝑡) [$/kWh]

25

Scenario Objective function

1 𝑐𝑝1+𝑐𝑝2
𝑇𝐶 =෍

𝑡

𝑇

𝑒(𝑡) ×෍
𝑠

𝑆

𝑝(𝑠, 𝑡) × 𝑧(𝑠, 𝑡) +෍
𝑖

𝐼

൯𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) − 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖 × 𝑐𝑝1 + ෍
𝑠

𝑆

𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 − )𝑃𝑑(𝑥, 𝑡 × 𝑐𝑝2

2 𝑐𝑝1 𝑇𝐶 =෍
𝑡

𝑇

𝑒(𝑡) ×෍
𝑠

𝑆

𝑝(𝑠, 𝑡) × 𝑧(𝑠, 𝑡) +෍
𝑖

𝐼

൯𝑆𝑂𝐶𝑟𝑒𝑞(𝑖) − 𝑆𝑂𝐶𝑑𝑒𝑝(𝑖 × 𝑐𝑝1

3 𝑐𝑝2 𝑇𝐶 =෍
𝑡

𝑇

𝑒(𝑡) ×෍
𝑠

𝑆

𝑝(𝑠, 𝑡) × 𝑧(𝑠, 𝑡) + ෍
𝑠

𝑆

𝑝 𝑠, 𝑡 × 𝑧 𝑠, 𝑡 − )𝑃𝑑(𝑥, 𝑡 × 𝑐𝑝2

<Table. 3 Scenarios for cost interaction experiment>
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 𝑐𝑝2 is more effective and critical to the system compare with 𝑐𝑝1
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<Fig. 20 Penalty cost interaction experiment result (a)> <Fig. 21 Penalty cost interaction experiment result (b)>

5. Experimental analysis and result

5.2 Experimental analysis 

5.2.2 Interaction between penalty costs (cont.)
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5.2.2 Interaction between penalty costs (cont.)

Service performance is investigated using four scenarios
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5. Experimental analysis and result

5.2 Experimental analysis 

<Fig. 22 Service performance experiment result>

 In all four scenarios, proposed model presented the best service performance level
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Scenario Number of EVs Number of charging piles

1 100 5

2 50 5

3 100 10

4 50 10

<Table. 3 Simulation scenario>
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5.2.3 Instantaneity electricity consumption

instantaneity electricity consumption before and after

optimization is tested:

• Instantaneity electricity consumption altered to:

1) Less peak power output

2) Better stability in energy transmission

5. Experimental analysis and result

5.2 Experimental analysis 

<Fig. 23 Instantaneity electricity consumption comparison>

Before                After

 Through charging power demand consideration:

1) Balancing energy transmission and consumption

2) Maintaining energy system capability
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 This research combined 1) charging power demand estimation & 2) EV charging scheduling problem

6. Conclusions and future study

6.1 Conclusions

29

 Solution approach: First stage: dynamic traffic fluid model computation

Second stage: MILP

 System performance: Total cost & total energy consumption & service performance

 Experimental analysis: Sensitivity analysis: number of charging piles, charging power estimation,

required battery state-of-charge

Cost interaction: penalty cost effectiveness

Instantaneity electricity consumption: maintain energy consumption

system capability
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• Charging power demand estimation model evaluation --> performance index development

• Expanding data diversity and quantity --> data acquisition

• Enhancing the efficiency of problem solving

6. Conclusions and future study

6.2 Research schedule
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THANK YOU
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