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1.Introduction

1.1 Research background

* G reen hOUSG gases em iSSiOﬂ Ca USi ng severe pO”UtiOﬂ W Worst case scenario, EU electric cars emit 22% less CO2
than diesel and 28% less than petrol

problem -> sustainable development

J Gasoline

. ) Diesel
 Urban transportation sector: electric vehicle (EV) g - Electric
replacing internal combustion vehicle
g
- Driving in Poland (fuel/electricity production and use)
. Car production in the EU
- . . . Battery production in China
» Impact of urban transportation sector on EVs is in T .
need of study and research <Fig. 1 Emission comparison of EV, gasoline car and diesel car>

Reference: https://m.gettyimagesbank.com/view/eco-friendly-electric-cars-and-gasoline-car-
comparison-electric-auto-environment-protection-advantage-vector-illustration-set-gasoline-electro-
car-comparison-infographic/1343361954
https://www.cittimagazine.co.uk/news/electric-vehicles-charging/te-busts-ev-co2-myth.html



https://m.gettyimagesbank.com/view/eco-friendly-electric-cars-and-gasoline-car-comparison-electric-auto-environment-protection-advantage-vector-illustration-set-gasoline-electro-car-comparison-infographic/1343361954
https://www.cittimagazine.co.uk/news/electric-vehicles-charging/te-busts-ev-co2-myth.html

1.Introduction

1.2 Research objective

This research studies

* Impact of urban traffic condition on EV charging
power demand

* EV charging schedule at charging stations operate by a

car sharing system

+* Research objective
1) Charging power demand estimation

2) EV charging schedule formulation

Reference: https://www.youtube.com/watch?v=BL99dIYDg6Y
https://www.autoevolution.com/news/wattmobile-new-ev-car-sharing-program-starting-in-france-
81997.html

<Fig. 3 Car sharing system charging station>


https://www.youtube.com/watch?v=BL99dIYDq6Y
https://www.autoevolution.com/news/wattmobile-new-ev-car-sharing-program-starting-in-france-81997.html

2. Literature review
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2. Literature review

Contribution

» Connection of individual EV charging schedule with traffic network

» Impact of urban traffic condition on EV sharing system operation

» Implementation of charging power demand estimation in charging station operation




3. Charging power demand estimation model

3.1 Traffic fluid model

N, (x,t) N,(x,t): Number of discharged EVs entering area Q during

timet

: N;(x, t): Number of discharged EVs leaving area Q during time
E ND (XJ t)
| t

N,(x,t): Number of discharged EVs from spatial origin to

charging station at time t

N, (¢, t): Number of discharged EVs that have already passed

N, (x,t through charging station before time t
p( 1) N, (x, t)

<Fig. 4 Traffic fluid model schematic diagram>




3. Charging power demand estimation model

3.1 Traffic fluid model

n,(x, t)
02 N,p(x,t) . : : :
ng(x,t) = ryrrant density of discharged EVs entering area Q at time t
ale(x,t) q . c c
n;(x,t) = ————: density of discharged EVs leaving area Q at time t

Jdxot

ON,(x,t)
ox

: density of discharged EVs at charging station at t

ONp(x,t)
at

: traffic flow of discharged EVs at charging station at t

n;(x, t)

<Fig. 5 Traffic density and flow diagram>




3. Charging power demand estimation model

3.2 Fluid conservation equation

» Fluid conservation equation:

Spatial origin
N.(x,t) — Ni(x,t) = Ny(x,t) + N,(x,t)
NE' (xl' t) NO (x, t) Q

n.(x,t) — n(x,t) = ny(x,t) + n,(x,t)

@

flow = density * velocity: n,(x,t) = n,(x,t) X v(x,t)
N;(x, t)

dng(x,t) ov(x,t) N,(x,t)
n.(x,t) — ny(x,t) = ‘;—t + — ny(x,t) v
<Fig. 6 Representation of fluid conservation equation>
dn,(x,t ov(x,t
> %=ne(x,t)— n;(x,t) — ;x )no(x,t)




3. Charging power demand estimation model

> Arrival rate:

a(x,t) =n,(x,t) Xxv(x,t) — B(t) -->L(t): arrival rate of discharged EVs will be charged at other charging station

Spatial origin

no(X, t) X U(X, t) no(x, t) X v(xl t) 2

<Fig. 7 Arrival rate diagrammatic drawing>

Reference: https://www.lboro.ac.uk/media-centre/press-releases/2019/november/loughborough-

joins-vpach-team/
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https://www.lboro.ac.uk/media-centre/press-releases/2019/november/loughborough-joins-vpach-team/

3. Charging power demand estimation model

» Minimum number of charging piles:

Simin = a;?t? > 1(t): service completion rate

Spatial origin

ny,(x,t) x vix,t)

<Fig. 8 Service completion rate>

f02 YONSEI

%» UNIVERSITY

u(t)

B(t)

n,(x,t)
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3. Charging power demand estimation model

» Charging power demand:

Pi(x,t) = Po,(8) X Spmin > P, (s): average charging power per charging pile

Spatial origin
N (x,t
B B( ) ND (x' t) Q
/ . h“‘"\
/ \
[ o N - = Ny(x,t)
Il'\Pd (JC, t) = Pay {5) X Simin :_.f'l e -1

<Fig. 9 Charging power demand diagram>
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4. EV charging schedule model

4.1 Notations

Indices

t timeindex,teT

i EVindex, i€l

s charging pile index, s € S

Parameters

N.(x,t) number of discharged EVs entering area Q at t

N;(x,t) number of discharged EVs leaving area () at t

N,(x,t) number of discharged EVs from spatial origin to charging station at t

N, (x,t) number of discharged EVs that have already passed through
charging station before t

n,(x,t) traffic density at charging station at t

n,(x,t) traffic flow at charging station at t

v(x,t)  velocity of EV at charging station at t [km/h]

B(t) rate of discharged EVs charging at other charging station at t

a(x,t) arrival rate of EVs at charging station at t

u(t) service completion rate at charging station at t

e unit electricity price [$/kWh]

SOC,,(i) arrival battery state-of-charge of ith EV [%]

1% YONSEI

UNIVERSITY

S0C,¢q(i) required battery state-of-charge of ith EV [%]

tarr (1)
taep (1)
Prax (®)
Prax(s)
Prax(sys)
Pav(s)
Pi(x,t)
p(st)

CP1

%)

arrival time of ith EV

departure time of ith EV

max charging power of ith EV [kKW]

max charging power of sth charging pile [kW]

system capacity [KW]

average charging power of sth charging pile [kW]

estimated charging power demand for charging station at time t
power provided by sth charging pile at t

penalty cost occurs when SOCye), (i) < SOC,q (i) [$/kWh]

penalty cost occurs when charging power exceeds P, (x, t) [$/kWh]

Decision variables

S0Cqep(1)
z(x, 1)

y(i, s, 1)

departure battery state-of-charge of ith EV [%]
=1, sth charging pile is occupied at t

=0, sth charging pile is unoccupied at t

=1, ith EV is charging at sth charging pile at t
=0, ith EV is not charging at sth charging pile at t

13



4. EV charging schedule model
4.2 EV charging scheduling problem description

Assumptions:
Discharged EVs -
Charging pile 1
(1) EVs arrive following arrival rate a(x, t)
. . Charging pile 2
(2) First-come-first-serve
Unoccupied
. . . . . charging Charging pile 3 Charged EVs
(3) Earliest idle charging pile selection nile?
(4) Charging EVs stop charging when: y
-->Battery state-of-charge requirements are e
Queue
satisfied
-->Departure time is reached <Fig. 10 Charging station operation>
ONSEI
UNIVERSITY




4. EV charging schedule model
4.2 Solution approach

Two-stage mechanism proposed to solve the problem

formulated:

1) First stage: charging power demand estimation

Arrival rate, charging power demand computation

2) Second stage: EV charging schedule

Mixed-integer linear programming

Input: number of EVs

[ Traffic fluid model ] — First stage

Output: a(x, t), P4(x, t)

]

~— Second stage

Charging schedule:
y(ii SJ t)! Z(s’ t)

<Fig. 10 Solution approach>



4. EV charging schedule model

Objective: total cost minimization = (electricity consumption cost + penalty cost 1 + penalty cost 2)

Penalty costl: SOCgep (i) < SOCreq (i)
min )\

TC =Xl e(t) x Zp(s,t) X 2(5,t) + Xi(SOCreq (i) — SOCaep(D)) X cp1 + (TS p(s,t) X 2(5,8) = Py(x, 1)) X ¢

k )
Y \ Y )

Electricity consumption cost Penalty cost2: charging power = estimated

charging power demand




4. EV charging schedule model

Constraint 1: individual capacity
For charging pile: p(s,t) X z(s,t) < Ppac(s) Vs, t (1)
For EV:p(s,t) X ¥(i,s,t) < Bpax(i) Vit (2)
Constraint 2: charging pile and EV consistency

YI¥iy(,s,t) = XFz(s,t) Vs (3)

Constraint 3: EV departure battery state-of-charge

tdep(i)

SOCdeP(i) = (Ztarr(i) p(s,t) X z(s,t)) X y(i,s,t) )/Pmax(i) +S50Cqr Vit (4)




4. EV charging schedule model

Constraint 4: penalty cost non-negative

Sp(s,t) X z(s,t) — Py(x,t) = max(O, Yop(s, t) x z(s,t) — Py(x, t)) vt (5)

SOCpeq(i) — SOCye, (i) = max(0, SOCyeq (V) — SOCye, (V) Vi (6)
Constraint 5: system capacity

Y3 XIp(s,t) X 2(s,t) < Ppax(sys) vt (7)
Constraint 6: binary variable

= 11ith EV charging at charging pile s at t (s, 1) = 1 sth charging pile occupied at t
= 0 ith EV discharging at charging pile s at t 24, = 0 sth charging pile unoccupied at t

y(i,s,t) {




5. Experimental analysis and result Spatial origin

Mol ) Ny ) Q
5.1 Case study
Numerical example to illustrate proposed problem Ni(.0)
Np(x,t)
> Real geographical information in Seoul, South <Fig. 11 Representation of traffic fluid model>
. . N, (x,t)
Korea is applied - , ,
N, (x,t) | LN
e Operation objective --> area Q 7
* Road segments --> black arrows i
* Charging station location --> red node ; v/ i o
o
N;(x,t)
Np(x,t)
<Fig. 12 Implementation in real map>
ONSEI 19
UNIVERSITY




5. Experimental analysis and result

5.1 Case study

Time-interval | Number of vehicles | Number of discharged EVs | Traffic density | Velocity
1 14 0.3 0.1 50.0
2 12 0.2 0.0 50.0
00:00am - 3 22 0.4 0.1 50.0
01:00am 4 21 0.4 0.1 50.0
5 26 0.5 0.1 50.0
6 41 0.8 0.2 50.0
7 36 0.7 0.1 50.0
8 29 0.6 0.1 50.0
01:00am- 9 14 0.3 0.1 50.0
02:00am 10 14 0.3 0.1 50.0
11 23 0.5 0.1 50.0
12 25 0.5 0.1 50.0
13 22 0.4 0.1 50.0
14 31 0.6 0.1 50.0
02:00am- 15 47 0.9 0.2 50.0
03:00am 16 35 0.7 0.1 50.0
17 21 0.4 0.1 50.0
18 11 0.2 0.0 50.0
19 17 0.3 0.1 47.0
20 13 0.3 0.1 47.0
03:00am- 21 12 0.2 0.0 47.0
04:00am 22 16 0.3 0.1 47.0
23 18 0.4 0.1 47.0
24 23 0.5 0.1 47.0

Reference: https://topis.seoul.go.kr/?tr_code=rsite

<Table. 1. Data collection (partial)>
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5. Experimental analysis and result

5.1 Case study

Arrival rate and charging power demand are shown: 160
 Maximum arrival rate of EVs is 14.5 and minimum is 100
8.0
 Maximum charging power demand is 144.6kW and 0o L| ohmmEenEmmEEE e H
minimum is 2.0kW <Fig. 13 Arrival rate of EVs>
* Five charging piles are needed 140

120

100

20

] 20 40 &0 80 100 120 140

<Fig. 14 Charging power demand for charging station>

ON 1 21




5. Experimental analysis and result

5.1 Case study

Parameter setting is illustrated according to previous research (Yang et al., 2019) :

Pnax(sys)
Prax(s)
Prnax(?)

50Creq ()

SOCqrr (1)

p(s,t)

Cp1

Cp2

e

T

Parameter
System capacity
Max charging power of sth charging pile
Max charging power of ith EV
Required battery state-of-charge of ith EV
Arrival battery state-of-charge of ith EV
Power provided by sth charging pile at t
Penalty cost occurs when SOC ey, (1) < SOC,¢q (i)

Penalty cost occurs when charging power exceeds
Pa(x,t)

unit electricity price
time index
charging pile index

<Table. 2 Parameter setting>

Value
500 [kW]
20 [kW]
100 [kW]

80 [%]

N(0, 50) [%]
20 [kWh]
0.5 [S/kWh]

0.5 [S/kWh]

N(2, 10) [S/kWh]
144
5



5. Experimental analysis and result

5.1 Case study

» Result of case study is achieved by gurobi in python

Charging pile 1

Charging pile 2

Charging pile 3

Charging pile 4

Charging pile 5

03.00am | 03:00am -- 04:00am | 0400am -- 0500am | 05:00am - 06:00am | 06:00am -- 07:00am | 07:00am -- 0B00am | 0&00am -- 09.00am | 0%:00am -- 10:00am | 1000

11:00am | 17:00am -- 12.00p1

1200pm - 13:00pm

1300pm - 1400pm | 1400pm -- 15:00pm | 15:00pm -- 16:00pm | 16:00pm - 17:00pm | 17:00pm -- 18:00pm | 1

<Fig. 15 Charging schedule>
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<Fig. 16 Departure battery state-of-charge (partial)>
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5. Experimental analysis and result

5.2 Experimental analysis

5.2.1 Sensitivity analysis
1. Number of charging piles (Fig. 17)
2. Estimated charging power demand (Fig. 18)

3. Departure battery state-of-charge (Fig. 19)

» Number of charging piles increase --> total cost decrease &
total energy consumption increase (system idleness)

» Estimated charging power demand P; = 49.33 (= system is
acceptable)

» Required battery state-of-charge SOC,..; = 85% (= system

breakdown)

ONSEI

¢ UNIVERSITY

15000 800

600
10000

400

- IIIII
0 IO

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10

N

00

B TC e Psum

<Fig. 17 Number of charging piles>

3500 100%
3000 1 80%
2500 |
2000 60%
1500 40%
1000

500 | 20%

0 w Ba Bw Ha Ho N Hu 0 Hm Hu B Hw Bo N A0 Bn W Bn B0 M0 Wn 0%

© W) N oaD © b Q > N ) \}
A\ Vv, D> S oM} %) 2 9 x Q
cb r{)/ :') @ @ /\Q) Q;Q ,\’Q,)’ & ’\,,Q

s TC e Psum Service performance

<Fig. 18 Estimated charging power demand>
30000 100%
25000 30%

20000
60%

15000 I
40%
10000
5000 20%
o H_H e 0%

60% 65% 70% 75% 80% 85% 90% 95%
Hm TC B Psum Service performance

<Fig. 19 Departure battery state-of-charge>
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5. Experimental analysis and result

5.2 Experimental analysis

5.2.2 Interaction between penalty costs
* Cp1 Ppenalty cost occurs when SOCyep, (i) < SOCreq(0) [$/KWh]

* ¢, penalty cost occurs when charging power exceeds Py (x, t) [$/kWh]

Scenario Objective function

1 Cp1+Cp2 TC = Z:e(t) X ij(s, t) X z(s, t) + Zj (SOCreq(i) — SOCdep(i)) X Ccp1 + (ij(s, t) X z(s,t) — Py(x, t)) X Cpo

T S 1
2 o TC = Zt e(t) X ZS (s, t) X 2(s,t) + Zi (S0Creq(®) = SOCuep(©)) X cpr

3 Cp2 TC = ZT e(t) X Zsp(s, t) X z(s, t) + (Zsp(s, t) X z(s,t) — Py(x, t)) X Cpo
t S S

<Table. 3 Scenarios for cost interaction experiment>




5. Experimental analysis and result

5.2 Experimental analysis

5.2.2 Interaction between penalty costs (cont.)

Total cost Total energy consumption

16000 800
14000

700
12000 \ 600
10000 — el 500
8000 400
6000 300
4000 \ 200

2000 eSNS—— 100
0 0
s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10
e cpltcp2 cpl cp2 — Ccpl+cp2 cpl cp2
<Fig. 20 Penalty cost interaction experiment result (a)> <Fig. 21 Penalty cost interaction experiment result (b)>

> ¢y is more effective and critical to the system compare with ¢,




5. Experimental analysis and result

5.2 Experimental analysis

5.2.2 Interaction between penalty costs (cont.) Service performance

Service performance is investigated using four scenarios 1
0.9
0.8
0.7
Scenario Number of EVs Number of charging piles 2_2
1 100 5 o
2 50 5 o I I
0
3 100 10 i=100 s=5 i=50 s=5 i=100 s=10 i=50s=10
4 50 10 W cpl+cp2 Mcpl Mcp2
<Table. 3 Simulation scenario> <Fig. 22 Service performance experiment result>

» In all four scenarios, proposed model presented the best service performance level

ST,
&) YONSEI
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5. Experimental analysis and result

5.2 Experimental analysis

5.2.3 Instantaneity electricity consumption

instantaneity electricity consumption before and after
optimization is tested:

* |Instantaneity electricity consumption altered to:

1) Less peak power output

2) Better stability in energy transmission

» Through charging power demand consideration:
1) Balancing energy transmission and consumption

2) Maintaining energy system capability

9

L

(]

1

0

Before

After

<Fig. 23 Instantaneity electricity consumption comparison>
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6. Conclusions and future study

6.1 Conclusions

» This research combined 1) charging power demand estimation & 2) EV charging scheduling problem

> Solution approach: First stage: dynamic traffic fluid model computation

Second stage: MILP

» System performance: Total cost & total energy consumption & service performance

> Experimental analysis: Sensitivity analysis: number of charging piles, charging power estimation,

required battery state-of-charge
Cost interaction: penalty cost effectiveness

Instantaneity electricity consumption: maintain energy consumption

system capability




6. Conclusions and future study

6.2 Research schedule

e Charging power demand estimation model evaluation --> performance index development
* Expanding data diversity and quantity --> data acquisition

* Enhancing the efficiency of problem solving
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